Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We prove the existence of a class of time-localized and space-periodic breathers (called q-gap breathers) in nonlinear lattices with time-periodic coe!cients. These q-gap breathers are the counterparts to the classical space-localized and time-periodic breathers found in space-periodic systems. Using normal form transformations, we establish rigorously the existence of such solutions with oscillating tails (in the time domain) that can be made arbitrarily small but finite. Due to the presence of the oscillating tails, these solutions are coined generalized q-gap breathers. Using a multiple-scale analysis, we also derive a tractable amplitude equation that describes the dynamics of breathers in the limit of small amplitude. In the presence of damping, we demonstrate the existence of transition fronts that connect the trivial state to the time-periodic ones. The analytical results are corroborated by systematic numerical simulations.more » « lessFree, publicly-accessible full text available March 31, 2026
-
Abstract In this paper, we focus on a discrete physical model describing granular crystals, whose equations of motion can be described by a system of differential difference equations. After revisiting earlier continuum approximations, we propose a regularized continuum model variant to approximate the discrete granular crystal model through a suitable partial differential equation. We then compute, both analytically and numerically, its travelling wave and periodic travelling wave solutions, in addition to its conservation laws. Next, using the periodic solutions, we describe quantitatively various features of the dispersive shock wave (DSW) by applying Whitham modulation theory and the DSW fitting method. Finally, we perform several sets of systematic numerical simulations to compare the corresponding DSW results with the theoretical predictions and illustrate that the continuum model provides a good approximation of the underlying discrete one.more » « lessFree, publicly-accessible full text available January 1, 2026
-
The aim of this work is multifold. Firstly, it intends to present a complete, quantitative and self-contained description of the periodic traveling wave solutions and Whitham modulation equations for the Toda lattice, combining results from different previous works in the literature. Specifically, we connect the Whitham modulation equations and a detailed expression for the periodic traveling wave solutions of the Toda lattice. Along the way, some key details are filled in, such as the explicit expression of the characteristic speeds of the genus-one Toda–Whitham system. Secondly, we use these tools to obtain a detailed quantitative characterization of the dispersive shocks of the Toda system. Lastly, we validate the relevant analysis by performing a detailed comparison with direct numerical simulations.more » « lessFree, publicly-accessible full text available December 1, 2025
-
Abstract The Riemann problem for the discrete conservation law is classified using Whitham modulation theory, a quasi‐continuum approximation, and numerical simulations. A surprisingly elaborate set of solutions to this simple discrete regularization of the inviscid Burgers' equation is obtained. In addition to discrete analogs of well‐known dispersive hydrodynamic solutions—rarefaction waves (RWs) and dispersive shock waves (DSWs)—additional unsteady solution families and finite‐time blowup are observed. Two solution types exhibit no known conservative continuum correlates: (i) a counterpropagating DSW and RW solution separated by a symmetric, stationary shock and (ii) an unsteady shock emitting two counterpropagating periodic wavetrains with the same frequency connected to a partial DSW or an RW. Another class of solutions called traveling DSWs, (iii), consists of a partial DSW connected to a traveling wave comprised of a periodic wavetrain with a rapid transition to a constant. Portions of solutions (ii) and (iii) are interpreted as shock solutions of the Whitham modulation equations.more » « less
-
We provide the first experimental realization of wavenumber bandgap (𝑞−gap) breathers. Experiments are obtained in the setting of a time-periodic phononic lattice where the model and experiment exhibit good qualitative agreement. 𝑞−gap breathers are localized in time and periodic in space, and are the counterparts to the classical breathers found in space-periodic systems. We derive an exact condition for modulation instability that leads to the opening of wavenumber bandgaps in which the 𝑞−gap breathers can arise. The 𝑞−gap breathers become more narrow and larger in amplitude as the wavenumber goes further into the bandgap. In the presence of damping, these structures acquire a nonzero, oscillating tail. The controllable temporal localization that 𝑞−gap breathers make possible has potential applications in the creation of phononic frequency combs, energy harvesting or acoustic signal processing.more » « less
-
Abstract We conduct an extensive study of nonlinear localized modes (NLMs), which are temporally periodic and spatially localized structures, in a two-dimensional array of repelling magnets. In our experiments, we arrange a lattice in a hexagonal configuration with a light-mass defect, and we harmonically drive the center of the chain with a tunable excitation frequency, amplitude, and angle. We use a damped, driven variant of a vector Fermi–Pasta–Ulam–Tsingou lattice to model our experimental setup. Despite the idealized nature of this model, we obtain good qualitative agreement between theory and experiments for a variety of dynamical behaviors. We find that the spatial decay is direction-dependent and that drive amplitudes along fundamental displacement axes lead to nonlinear resonant peaks in frequency continuations that are similar to those that occur in one-dimensional damped, driven lattices. However, we observe numerically that driving along other directions results in asymmetric NLMs that bifurcate from the main solution branch, which consists of symmetric NLMs. We also demonstrate both experimentally and numerically that solutions that appear to be time-quasiperiodic bifurcate from the branch of symmetric time-periodic NLMs.more » « less
-
The principles underlying the art of origami paper folding can be applied to design sophisticated metamaterials with unique mechanical properties. By exploiting the flat crease patterns that determine the dynamic folding and unfolding motion of origami, we are able to design an origami-based metamaterial that can form rarefaction solitary waves. Our analytical, numerical, and experimental results demonstrate that this rarefaction solitary wave overtakes initial compressive strain waves, thereby causing the latter part of the origami structure to feel tension first instead of compression under impact. This counterintuitive dynamic mechanism can be used to create a highly efficient—yet reusable—impact mitigating system without relying on material damping, plasticity, or fracture.more » « less
An official website of the United States government
